需同意授權

作物水分影像預警模型

本研究針對水稻智慧農業落地所面臨的高設備成本與操作門檻等困難,提出一套以手機拍攝之 RGB 影像為基礎,透過生成式智慧(Generative AI)技術轉換成類光譜訊號的水分預警模型。該模型整合多種水分與紋理特徵(如 NDWI、LWCI、Wavelet-based Spectral Features、GLCM-based Texture Features 等),能夠即時解析作物生理狀態並量化水稻的水分風險指標。在方法論上,模型運用影像前處理、特徵萃取及機器學習技術,實現從低維度 RGB 到近似高光譜資料的深度估測,使農戶與管理者可藉由簡單拍攝與雲端或在地分析,快速獲得精準的水稻健康評估。相較於傳統昂貴且維護複雜的高光譜設備,此方法在硬體成本與操作便利性上顯著降低了門檻,同時維持高度的可靠度與應用廣度。未來,該技術不僅可用於水分監測,也能擴展至病蟲害檢測與營養診斷,並與大數據、物聯網(IoT)系統進行跨平台整合,為智慧農業提供具經濟效益且高可擴充性的全方位解決方案。

Data and Resources

基礎工具

  • first_model_water.jsonJSON

    一期稻作物水分預測模型 模型摘要 (Description) 這個模型是一個基於 XGBoost...

Additional Info

Field Value
Last Updated November 4, 2025, 12:49 (+0800)
Created October 14, 2024, 11:11 (+0800)

Recommended AI Model

RGB轉多光譜水稻田模型

更新頻率 定期
瀏覽次數 38
下載次數 0
🌾 生成式光譜重建模型(Generative Spectral Reconstruction Model) Model Name:model_SGN_bands12_feat31_20250825_172824.pth Model Task:Image-to-Multispectral Translation Application...

水稻叢自動偵測標記模型

更新頻率 定期
瀏覽次數 21704
下載次數 73
模型概述 本模型基於 YOLO V7 架構,經過訓練標註數百張水稻空拍影像,能夠精確地在影像中識別並以矩形框標示水稻叢的位置。該模型的應用旨在提高水稻田間管理的效率,通過自動化的影像分析技術,農民能夠快速獲取水稻叢的位置信息,從而進行精準的田間操作和監測,提升作物管理的精度與效果,最終實現增產增收的目標。 電腦需求 需配有 Nvidia...

水稻叢影像去背模型

更新頻率 定期
瀏覽次數 24550
下載次數 1
模型摘要 1. 模型概述 本模型基於 U2-NET 架構,專門用於影像去背。U2-NET 是一種輕量級的深度學習網絡,設計用於高效的前景物體檢測和分割。模型能夠自動將影像中的主要物體與背景進行區分,生成對應的影像遮罩,並實現精確的去背效果。 2. 應用場景 本模型適用於 無人機空拍影像 的去背處理,特別是去除土壤、雜草等背景雜訊。具體應用場景包括:...